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Stability analysis adjacent to neutral solutions of 
the Taylor-Goldstein equation when Howard’s 

formula breaks down 
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The Taylor-Goldstein problem for stability of stratified shear flows of inviscid 
Boussinesq fluids is treated. Perturbation of a known neutral curve is used to obtain 
the stability characteristics in the neighbourhood of the curve. In the cases that are 
studied Howard’s technique for perturbing neutral modes breaks down. This is 
related to the vanishing of a coefficient in the expansion of the dispersion relation 
near the neutral curve. In that case instability may occur on either side of the neutral 
curve. Examples are used to illustrate how unexpected behaviour arises, such as 
instability on both sides of a neutral curve. 

1. Introduction 
The stability properties of some particular stratified shear flows are investigated. 

The stability characteristics in the neighbourhood of a neutral mode are obtained 
from the dispersion relation, written as a2 - a: = k,(c - c,) + k,(c - c,), + k,(c- c,), + . . . 
(Engevik 1973a, 1975), where a, and a are the wavenumbers and c, and c the wave 
velocities of respectively the neutral mode and the unstable mode contiguous to the 
neutral one, and k,, k, and k, are constants. 

k, is the inverse of Howard’s (1963) formula, which has often been used to 
investigate the stability characteristics in the neighbourhood of a neutral mode (cf. 
Drazin & Howard 1966). However, there exist examples for which Howard’s formula 
is not applicable (Huppert 1973; Engevik 1978). This is, for instance, the case when 
there exists a neutral mode such that k, becomes equal to zero, which occurs in the 
particular flows that we are considering in this paper. In these flows there will always 
be instability on one side of a neutral curve where k, = 0, and this unstable side is 
found by calculating k,. However, on the other side of the neutral curve nothing can 
be said conclusively about the stability/instability from the knowledge of k, only, 
and we have to calculate k, as well in order to determine whether there is instability 
or not here. This is the problem we are faced with in this paper. The calculations have 
revealed new instability regions for the Garcia flow (cf. Holmboe 1962; Miles 1963; 
Drazin & Howard 1966, p. 77), which is one of the examples studied in this paper. 

In $2 the general method for finding the dispersion relation is presented, and i t  
is applied to some particular examples in $3. 

In  $3.1 we consider the simple stratified Couette flow (Heiland t Riis 1968), for 
which the dispersion relation can also be expressed in terms of two confluent hyper- 
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geometric functions. k, is found by expressing the dispersion relation in this way, and 
by the general method given in $2. 

In $3.2 a simple stratified shear flow of infinite vertical extent is discussed. There 
exist neutral curves along which k, = 0, corresponding to stationary neutral modes. 
Application of the general theory in $2 shows that there must be instability on both 
sides of these curves, and numerical calculations reveal neutral curves corresponding 
to non-stationary neutral modes. 

. In  $3.3 the Garcia flow is discussed. 

2. The general theory 
Let the stream function corresponding to an infinitesimal disturbance of a parallel, 

two-dimensional, inviscid and heterogeneous shear flow be denoted by #(y) eia(s-ct). 
If the Boussinesq approximation is made, the amplitude function $(y) satisfies the 
Taylor-Goldstein equation 

J P  U" 

Here U(y) is the basic-flow velocity, N(y) the buoyancy frequency, J a  (representative) 
Richardson number, a the wavenumber and c the wave velocity (which may be 
complex). The prime denotes differentiation with respect to y. All variables in (2.1) 
have been non-dimensionalized with respect to an intrinsic lengthscale L and velocity 
scale V. 

The fluid may be confined between two rigid planes at y = yl, y,, or may extend 
to infinity, i.e. y1 and ya may become - 00 and + 00 respectively. U(y) and N(y) are 
assumed to be analytic functions of YE [y,, y,]. The boundary conditions are 

or 
$ = O  a t y = y , , y ,  

$-to when y++m. 

It is assumed that there exists a stability boundary, and the amplitude function, 
the wavenumber, the wave velocity and the Richardson number of the neutral mode 
on this stability boundary are denoted by q5,, a,, c, and J,  respectively. The critical 
layer corresponding to this neutral mode is at y = y,, where ys is given by the equation 
U(y) = c,. We assume that there exists only one critical layer, which lies in the interior 
of the flow field, and that U'(y,) 9 0. This means that we do not consider flows with 
critical layers a t  the boundaries and the particular problems they pose (see Huppert 
1973; Engevik 1978). 

Equation (2.1) has a regular singularity at the critical layer y,. As is well known, 
this singularity can be removed by introducing dissipative effects. It is found that 
in the inviscid limit of the linear, diffusive theory there is a --x phase shift across 
the critical layer (Koppell964; Baldwin & Roberts 1970; Engevik 1974). We consider 
the solutions on a contour L that goes around the critical point in accordance with 
this phase shift across the layer. arg (U-c , )  is defined to be zero for U - c ,  > 0 and 
--x for U - c ,  < 0, and L consists of the line segments [y,, y,-p] and [y,+p, y,] on 
the real axis and the small semicircle C with radius p, which lies below or above the 
critical point according to whether U'(ys) > 0 or U'(y,) < 0. 

With the above assumptions, $, is proportional to either of the two solutions 
q5* = (U-c,):*"Y+, where v = {i-R(y,)}i~[O, 41. Here R(y,) = J,N2(y,)/(U'(y,))2 is 



Stability of strati$ed shear JEows 349 

the local Richardson number at the critical layer, Y+ is analytic on [y,, y,], and 
Y*(ys) + 0 (Miles 1961; Engevik 19738). In  general $* is a many-valued function, 
and we choose the branch for $, that is in accordance with the definition of arg ( U -  c,) 
above,i.e.$+ = (U-c,)~*”Y~forU-c, > Oand$* = exp{-in(~&u)}IU-c,Ii*” Y* 
for U-c, <O. $+ is analytic on L. 

We notice thatwhen u = ?j, which corresponds to R(y,) = 0, both $+ = (U-c,) Y+ 
and $- = Y- are analytic on [y,, y,] and have no singularity at the critical layer. 

Let the amplitude function, the wavenumber, the wave velocity and the Richardson 
number of a linearly unstable mode contiguous to the neutral one be denoted by $, 
a, c and J respectively. If J = J ,  the dispersion relation for this unstable mode can 
be written as (Engevik 1973a, 1975) 

where k,, 1 = 1, 2, ..., are constants. Also 

The index s means that the expression within the brackets is evaluated at a = a, and 
c = c,. 

In the following let 

J , P  u“ 
(U-c), u-c 

E = E(y, a, c, J,) = ----a2, 

Also let 8, be a solution of (2.1) with c = c,, a = a, and J = J,, and such that 8, and 
4, are linearly independent. 

It is found (Engevik 1973a, 1975) that 

where W is the Wronskian, which is a constant in this case. The integration in (2.5) is 
along the contour L defined previously, and yo can be chosen to be any point on L. 

The constant k, is given by 

We observe that $, and k, can be obtained from (2.5) and (2.6) once $, and 8, are 
known. First k, can be obtained when $s is known; then can be found since k, 
is known, and so on. k, can be obtained when q51, ..., $,-, and k,, ..., klPl are known, 
and when k, is also known $l can be found. 

The formulae (2.6) will be used to examine whether there exist unstable modes 
12-2 
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contiguous to the neutral ones that are found in the examples in $3, In these examplea 
the velocity profile U(y) is an odd function and the buoyancy frequency N ( y )  is ad 
even function of y. Then we know that if &) is an eigenvalue furlction with wave 
velocity c then d*( -y) is alao an eigenvalue function with wave velocity c * ,  where 
the asterisk meana complex conjugate. Thid property can be used to say something 
about k, in the cases when the neutral solution is stationary, i,e, c ,  = 0. It is found 
that k, must be purely imaginary when l is odd, and real when 1 is eveh. To know 
this simplifies the calculation of k,, 

In the examplea in %a atationary neutral solution8 have been found, located on 
curves in the (a, J)-plane. Along Borne of these curves k, =!= 0, along others k, = 0. 
When k, 9 0 there will he instability on obe side of the curve only. However, when 
k, e= 0 there may exkt unstable modes on both sides of the neutral curve, and we 
have to calculate Ic, in order to decide whether there ia instability OQ one or both aides, 
If we put c, = 0, c = c,+ic,, k, = 0, kfi =k 0 and k, = ikai into (2.3) we obtain the 
following results : 

(i) on that side of the neutral ourve where aa - a: and k, have opposite signs thete 
is instability with 

(ii) on the side of the neutral Ourve where ct2-ct: and k ,  have the same sign there 
is instability if k, and k,l have opposite signs, and we find that 

We notioe that on one side of the neutral curve c,, = 0 (‘principle of exchange of 
stabilities’); on the other side there are two unstable waves with opposite directions 
of propagation. 

3. Exampler 
3.1. Strutijied Couette $ow 

In this firet example we aonsider stratified Couette flow, i.e. U J y, P - y B  and 
yo PI -yl 5: 1 (Hsiland & Riis 1968). There exist the stationary neutral modes 

c 8 = 0 ,  +,,=sinnlry, u i = d - ( n x ) * ,  n = l , 2 , . , . , n l ,  (3.1) 

c, = 0, q5, = cos(n-&)x, = J - ( ( n - t ) ~ ) * ,  n = 1 ,  2, .,., n2 (3.2) 

where n, and np are the largest integem that satisfy J - ( ~ , X ) ~  2 0 and 
J -  ((nl -f) 7 ~ ) ~  2 0 respectively. 
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It has been shown by Engevik (1973b) that k, = 0 for the modes given by (3.1). 
This is in agreement with the result (ac/aa2)J = 00 of Huppert (1973), who used 
Howard’s (1963) formula, which is the inverse of k,. Therefore we have to calculate 
both k, and k,  in order to find the stability characteristics in the neighbourhood of 
these neutral modes. k, has also been found previously by different methods (Huppert 
1973; Banks & Drazin 1973; Engevik 1973~) .  By using the general formula in (2.6), 
k, becomes 

k, = 6Jnx Si (2nn) - - 2Jz s i  (2xn)  in (2nn) 
nn 

Cin (2nny) dy] , (3.3) 
sin (2nny) - [ 1: 1 - cosy(2nny) Si (2xny)  dy - Jo 

nn Y 

where the sine and cosine integrals are defined respectively by 

Si (2) = 1 dt, Cin (z) = dt. 

By a different method (see below) Huppert (1973) calculated the inverse of k,, and 
obtained an expression which has been shown to be equivalent to that of (3.3) (Banks 
& Drazin 1973; Engevik 1973a). Since it turns out that k, is negative, it follows from 
(2.7) that there is instability for a > a,. However, nothing conclusively can be said 
about the stability characteristics for a < a, until we have Calculated k,. We applied 
the formula (2.6) to find k,, and, taking into account that k, must be purely 
imaginary, the calculation turned out to be quite simple. We obtained 

2 3  
(nN 

4J(nx), - 6 P  Cin (2nx) +e (Cin (2nn)), (3.4) 

It is easily found that kSi > 0 along the neutral curves where k, = 0, and therefore 
there is also instability for a < a,, which follows from (2.8). This result is in agreement 
with the numerical calculations of Huppert (1973). 

We have chosen to consider this example, because in this case both k, and k, can 
be found without using the general theory, and therefore we have the possibility of 
checking the result (3.4) that is obtained from the general theory. In this simple case 
the dispersion relation can be expressed in terms of two confluent hypergeometric 
functions (Huppert 1973). It becomes 

(3.5) 

where M(u, b, z )  and U(a, b, z )  are the two linearly independent confluent hyper- 
geometric functions, which are defined in Abramowitz and Stegun (1965), and 

M(u, b ,  ~ ( 1 ) )  U(U, b,  Z( - ~ ) ) - M ( u ,  b,  Z( - 1)) U(U, b, ~ ( 1 ) )  = 0 

I a = ;+ (*-JcZ)Lk(a2--J)- t ,  

b = 1 + (1 - 4Jc2)4 
z(y) = 2(aZ-J)4(y-c). 

In the calculations we have used the integral representations of M(a, b, z) and 
U(u, b, z )  given respectively by equations (13.2.1) and (13.2.6) in Abramowitz & 
Stegun. 
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If we expand the left-hand side of (3.5) about the mode (3.1) we get 

- i(;;ncz;E) + [ 3iJ Si (2nx) - - iJ2 { 1 J 1 cos (2nnt) ( log - )'dt 
(nn), (nn), 2 l - t  

11 c2 

1 
nx 

+ - Si (2nx) Cin (2n7c) 

P 2 Cin (2nx) 2 Si (2nx) Cin (2nx) + - 3 Si(2nx)-x +- - [:{ 1 (nx)2{ n nn 

1 

+ Jy cos (2nxt) (log &y dt - f J cos (2nxt) 
0 

(3.7) 

From (3.7) it follows that 

1 

6Jnx Si(2nn)-P{ 1 0 ~ o s ( 2 n n t ) ( l o g ~ ) ~ d t  l - t  

11 2 
nx 

+- Si (2nx) Cin (2nn) c2+O(c3), (3.8) 

The coefficient of c2 has previously been found by Huppert, and is equivalent to the 
expression (3.3) for k,. 

If we put the expression (3.8) for a,--.: into the term (a2--:) c/(nn), in (3.7) we 
get 

dt +- Si (2nn) Cin (2nx) c2 I1 2 2  
6Jnx Si(2nx)-P cos(2nnt) log- ( ,",> n7c 

1 2J3 
4 J ( n ~ ) ~ - 6 P  Cin(2nx)+-(Cin (2nn)), c3+ ..., (3.9) 

(4, 
where we have used 

1 Cin (2nx) 
1 0 ( l - t  )2df+ n '  

cos (2nnt) (log &y dt = - f J cos (2nnt) log - 

which can be shown by integrating eiPnnz (log z-log (z-  l)), along a proper contour 
in the complex z-plane. 

Equation (3.9) shows that we have found the same expression for k, as the one 
obtained by the general theory. However, k, is more easily found by the general 
theory. 

3.2. Strati$ed shear flow of in$nite vertical extent 

In  this example we consider the model 

1 (YE (4% m)), 
siny (YE[--$, $I), 
-1 (YE(-Oo,  -in)), 
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Let h be defined by Ae = J,+ 1 -at. It is found that there exist the following 
stationary modes : 

the even stationary modes are 

(3.10a, b )  
cos (+An) exp [ -a,(y - ia  (y E (in, a)), 

c, = 0, $4, = cos Ay (y E [ -in, in]), { C O S ( i W  exp[a,(y+in)I (YE(-aO,  -in)), 
where a, and J, are connected through 

tan iAn = a,/A ; 
the odd stationary modes are 

(3 .10~)  

(3 .11~.  b )  

(3.11~) tan +An = -Alas. 
The relations between a, and J, in (3.10~) and (3.11 c) give the neutral curves along 

which c, = 0 in figure 1. The neutral curves corresponding to the even modes are 
denoted by (ll), (12) and (13), and the ones corresponding to the odd modes by (21), 
(22) and (23). 

The theory in $2 can be applied in this case too, in spite of the fact that U(y) and 
N ( y )  are only piecewise-analytic on ( -  co, co). For the theory to be applicable it is 
sufficient that U(y) and N ( y )  are analytic in the vicinity of the critical layer, which 
is the case in this example. 

sin (+W exp [-a,(y-$)l (YE (in, m)), 
sinAy (y~[-+n, in]), 

-sin($W exp[a,(y++n)l, ( y ~ ( - m ,  -in)), 
where a, and J, are connected through 

By introducing the modes (3.10) into k, given by (2.6) we obtain 

k, = in (2J,+ l)/Al, I 
where A, =- cos2 +An +in (1 +?) ,I 

a, 

(3.12) 

which yields instability in the neighbourhood to the left of the curves (l l) ,  (12) and 
(13). 

By introducing the modes(3.11) into the formulae in (2.6) we get 

k, = 0, (3.13) 

where (3J,+1) sinZhy - (2J,+1)zl,,(y) sin2Ay 
h sin y H(Y) = sin2y (3.14) 
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1 2 3 4 5 
a 

FIGURE 1 .  The unstable regions are denoted by roman numerals: cr = 0 in I, I11 and V, and cr += 0 
in 11, IV andVI. The neutral modescorresponding to theneutral curves ( 1 )  and (2) are non-stationary, 
while those corresponding to the other neutral curves are stationary. 

where 

From (3.14) i t  follows that k ,  - -2aE when as+O along the curve (21), which is the 
same asymptotic expression for k ,  as was found for the Holmboe and the Garcia flows 
(Engevik 1982). 

Numerical calculations have shown that k,  < 0 along the curves (21), (22) and (23). 
From (2.7) i t  follows that there exist unstable modes contiguous to q5s for a > a,. To 
decide whether there is instability to  the left of these curves also. we have to calculate 
k,  along the curves. Numerical calculations show that there exists a point 
(as, J,) = (ao, J,) on the curves (21) such that k,, < 0 for a, < a, ( J ,  < J,) ,  and that 
k,, > 0 for a, > a. (J ,  > J, ) .  Therefore there is no instability in the neighbourhood 
to  the left of the curve (21) when a, < ao, but there exist unstable modes to the left 
of this curve when a, > a,. This follows from (2.8). Approximate values of a, and 
Jo are 0.12 and 0.17 respectively. 

It is found that k,, > 0 along the curves (22) and (23), and therefore there is 
instability in the neighbourhood of these curves to the left also (see figure 1) .  

We now know that there exist unstable modes to  the left of the neutral curve (21), 
(22) and (23), and we also know the asymptotic value of c given by (2.8). We therefore 
carried through a numerical solution of the eigenvalue problem (2.1)-(2.2), taking the 
asymptotic value given by (2.8) as the starting value of c. The numerical results are 
shown in figure 1. New neutral curves, denoted by (1) and (2) in figure 1, are found. 
Only the part of the neutral curve (1) that  forms a part of the stability boundary 
is calculated i.e. the part with U-values greater or equal to a,. 

The neutral modes corresponding to the neutral curves (1) and (2) are not 
stationary. In  figures 2-4 i t  is shown how c, and c, vary with a from curve (21) to 
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FIQURE 2. The variation 

0.30 
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a 

of c, and ci with a in the unstable region I1 in figure 1 for J = 0.5. 

curve (1) in the unstable region I1 for some fixed values of J. We see that c, increases 
from curve (21), where it is equal to zero, to  curve (1). Analogous behaviour of c, and 
ci is found between the curves (22) and (2). 

3.3. The Garciajow 
I n  this last example we consider the Garcia flow (cf. Holmboe 1962 ; Miles 1963, Drazin 
& Howard 1966, p. 77): 

(3.16) U = tanh y, N2 = 3 sech2 y tanh2 y ,  y2 = -yl = 00. 

Garcia found the neutral modes 

c, = 0, J ,  = $(a,- 1) (as+2),  4, = (sech y)"~, (3.17) 

c, = 0, J ,  = $a,(as+3), $, = tanh y (sech y)"., (3.18) 

which are located on the two neutral curves denoted respectively by (11) and (21) 
in figure 5. Miles (1963) found that in this model there exist an infinite number of 
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a 

FIGURE 4. The variation of c, and c, with a in the unstable region I1 in figure 1 for J = 10, 15, 
20 and 25. 

neutral curves corresponding to neutral stationary modes. Some of these curves, 
denoted by (12), (22), (13), (23) and (14), are sketched in figure 5.  

It is found (Engevik 1982) that along the curve (11)  k, = ik,, is purely imaginary 
and that k,, > 0, which yields instability for a < a,. Further, it is found (Engevik 
1982) that along the curve (21) 

k, =0 ,  
(3.19) 

We see from (3.19) that k, < 0 Va,, which yields instability for a > a,. In order to 
find whether there are unstable modes in the neighbourhood to the left of the curve 
(21) we had to calculate k,. We obtained 

(3.20) 

where B(r,  s) denotes the beta function. It follows from (3.20) that there exists a point 
(as, J,) = (a,, J,)  on the curve (21) in figure 5 such that 

(3.21) 

which shows that there are neighbouring unstable modes also to the left of the curve 
(21) for a, > a,,, but that there are no such modes for a, < a,. 

Numerical calculations have revealed new instability regions for the Garcia flow 
and new neutral curves denoted by ( l ) ,  (2) and (3) (see figure 5). Only the part of 
the curve ( 1 )  that is a boundary between a stable and an unstable region has been 
calculated. The neutral modes corresponding to these new neutral curves are not 

1 k,, > 0 

k,, < 0 for a, < a,, ( J ,  < J,) ,  

for a, > a, w 0.25 ( J ,  > J ,  = ~a0(a0+3)  x 0.27), 
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FIQURE 5. The unstable regions are denoted by roman numerals: c, = 0 in I ,  111, V, VII, and c, + 0 
in 11, IV, VI. The neutral modes corresponding to the neutral curves ( l ) ,  (2) and (3) are 
non-stationary, while those corresponding to the other neutral curves are stationary. 

stationary. The variations of c, and ci through the unstable region 11, I V  and VI  are 
found to be analogous to those shown in figures 2 4 .  

Theresult (320)issimilarto (3.15). Intheregionclose to theoriginin the (a, J)-plane 
it is the curve (21), along which c, = 0, that represents the boundary between the 
stable and the unstable regions in both of the examples in $$3.2 and 3.3. This is to 
be expected from the results of Drazin & Howard (1961,1963) concerning the stability 
characteristics for a profile of shear-layer type in the limit a+O with J/a fixed (cf. 
Drazin & Howard 1966). It is therefore to be expected that the neutral curve (1) in 
figures 1 and 5 should not be a stability boundary close to the origin in the (a, J)-plane. 

4. Conclusion 
The dispersion relation a2-a: = k,(c-~,)+k,(c-c,)~+ k,(c-cC,),+ ... given in $2 

has been applied to investigate the stability of some stratified shear flows. It becomes 
especially simple when the velocity profile U ( y )  is an odd function of y, and the 
buoyancy frequency N ( y )  an even function, and the neutral mode is stationary. Then 
k, is real when 1 is even, and purely imaginary when 1 is odd. The particular flows 
that we have considered have velocity and density profiles of this type. 

It is found that if k, = 0 along some neutral curve where c, = 0 in the (a, J)-plane 
there may be instability in the vicinity of this curve on one or both sides. It depends 
on k, and k, = ik,i. There will always be instability on that side of the neutral curve 
where k, and a2-a: have opposite signs, and here ci - (- (a2 -aE)/k,)i and c, = 0 
when a+as. If, in addition, k, and k,i have opposite signs there will be instability 
on the other side of the neutral curve too, and here ci - -k3i(a2-a:)/2ki and 
c, - & ((a2-a:)/k,9 when a+a,. On this side there are therefore two unstable waves 
with opposite directions of propagation. 

Application of the general theory to the stratified Couette flow yields results in 
agreement with the numerical results of Huppert (1973). In this simple case k, and 
k, are also obtained by expressing the dispersion relation in terms of two confluent 
hypergeometric functions, and the general theory is confirmed. However, i t  turns out 
that k, and k, are more easily obtained from the general theory. 
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For the Garcia flow neutral curves and instability regions that have not been known 
previously arc found. The neutral modes corresponding to  these neutral curves are 
not stationary. 

Application of the general theory to the stratified shear flow in $3.2 also reveals 
instability on both sides of the neutral curves along which c, = 0 and k, = 0. By 
numerical calculations neutral curves corresponding to  non-stationary neutral modes 
are obtained. 

Both for the Garcia flow and the flow in $3.2 the stability boundary close to the 
origin in the (a, J)-plane is given by the curvc along which c, = 0. This is in agreement 
with the results of Drazin & Howard (1961, 1963) concerning the stability 
characteristics of unbounded flows for long waves (cf. Drazin & Howard 1966). 

One of the referees has pointed out to us that the theory might be applicable to 
the Charney model of baroclinic instability (Charney 1947 ; Pedlosky 1979), where 
instability occurs on either side of the neutral modes. It is certainly true that the 
dispersion relation (2.3) can be used to study the stability characteristics in the 
vicinity of the neutral modes, but the governing equation and the boundary 
conditions in the Charney model are different from (2.1) and (2.2), and the expressions 
for k,, 1 = 1 ,2 ,  ..., will be modified accordingly. However, in the Charncy model the 
neutral modes are stationary (c, = 0), and k, is obviously equal to zero, so an 
analogous problem to the one we have studied in our paper arises in this model, and 
i t  can be solved in the same way. 

We are grateful to a referee for drawing our attention to Charney’s model. 
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